If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-3=0
a = 9; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·9·(-3)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{31}}{2*9}=\frac{-4-2\sqrt{31}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{31}}{2*9}=\frac{-4+2\sqrt{31}}{18} $
| |5-x|=5 | | |6*x|=10 | | 4.2x-9=2.4 | | 9x+8-6(x+1)=7x+5 | | 10(z+3)-4(z-2)=2(z-1)+3(z-2) | | 4x+11=6x+19 | | |6x|=10 | | Y=-0.06x(x-50) | | 5x+9=8×-4 | | 4/10x-2x+12/10=8/10 | | H=256t-32t | | 2.5-2=m(1-2)/ | | 1=-5(4x+3)+21 | | 2.5,2=m(1-2) | | 7x-42=-4 | | x^2-2.25x-7=0 | | 10y^2−91y+9=0 | | x-1.125=-4.25 | | x-1.125=4.25 | | 1.9k=5.32 | | (5x*3)-(3x+6)=0 | | 3x+1/4=3/4 | | (4x+10)/5=100 | | 2x/5+x/10=25 | | 5x(3)-(-3x)+6=0 | | 5x(3)-(-3x)=-6 | | 3x-3x-4=-x+7-4 | | X4+8x2+25=0 | | 2n=18+n | | 6x^+19x-7=0 | | 6^(-3x)·6^(2x)=36 | | 0=x^-3x+1 |